

Geometrie

Einfache Sätze über Geraden

Autor: Peter Andree

Inhaltsverzeichnis

1	Einfache Sätze über Geraden		1
	1.1	Der Satz von Menelaus]
	1.2	Der Satz von Ceva	6

1 Einfache Sätze über Geraden

1.1 Der Satz von Menelaus

In der folgenden Zeichnung ist (d) eine Transversale, die zwei Seiten des Dreiecks von innen und eine Seite von außen schneidet.

Satz - Transversale und Dreieck

Gegeben wird das Dreieck $\triangle ABC$, dessen Seiten von der Transversalen (d) in den Punkten

$$\{A'\} = (BC) \cap (d), \{B'\} = (AC) \cap (d), \{C'\} = (AB) \cap (d)$$

geschnitten wird. Dann gilt

$$\frac{|A'C|}{|A'B|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|B'A|}{|B'C|} = 1.$$

Beweis: Wir fällen aus den Punkten A, B und C die Senkrechten auf die Transversale

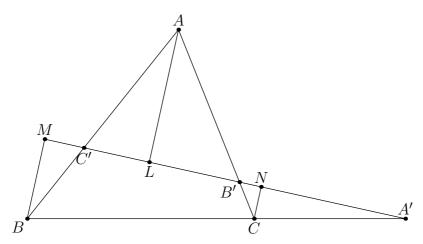


Abbildung 1: Satz von Menelaus

(d), Senkrechten die die Transversale in den Punkten L, M und N schneiden.

Zweiter Strahlensatz bezüglich
$$(BM) \parallel (CN) : \frac{|A'C|}{|A'B|} = \frac{|CN|}{|BM|}$$
 (1)

Zweiter Strahlensatz bezüglich
$$(BM) \parallel (AL) : \frac{|C'B|}{|C'A|} = \frac{|BM|}{|AL|}$$
 (2)

Zweiter Strahlensatz bezüglich
$$(CN) \parallel (AL) : \frac{|B'A|}{|B'C|} = \frac{|AL|}{|CN|}.$$
 (3)

Durch Multiplikation der Beziehungen folgt $\frac{|A'C|}{|A'B|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|B'A|}{|B'C|} = \frac{|CN|}{|BM|} \cdot \frac{|BM|}{|AL|} \cdot \frac{|AL|}{|CN|} = 1$ und somit der Beweis erbracht.

Der Kehrsatz des Satzes ist der Satz von Menelaus. Diesen formulieren wir jetzt.

Satz – Satz von Menelaus

Erfüllen drei Punkte $A' \in (BC), B' \in (CA)$ und $C' \in (AB)$ die Beziehung

$$\frac{|A'C|}{|A'B|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|B'A|}{|B'C|} = 1,$$

dann sind die drei Punkte kollinear.

Beweis: als Übung für den Leser. Durch Zurückführung auf einen Widerspruch erfolgt die Aussage auf einem sehr einfachen Weg. \Box

Bemerkung: Der Kehrsatz ist ein gutes Kriterium für Kollinearität.

Aufgabe 1.1.1 – Anwendung Satz von Menelaos

Zeige, daß der Schwerpunkt im Dreieck die Schwerlinie in das Verhältnis 2:1 teilt.

1.2 Der Satz von Ceva

Satz - Geraden durch Eckpunkt und einen inneren Punkt eines Dreiecks

Gegeben wird das Dreieck $\triangle ABC$ und ein Punkt Q im Inneren des Dreiecks. Die Verlängerungen der Strecken [AQ], [BQ] und [CQ] schneiden die Dreieckseiten in den Punkten A', B' und C'. Dann gilt

$$\frac{|A'C|}{|A'B|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|B'A|}{|B'C|} = -1. \tag{4}$$

Bemerkung: Wird ein Verhältnis zweier Strecken im Zähler und Nenner in verschiedenen Richtungen durchwandert, so ist der Wert des Bruchs negativ.

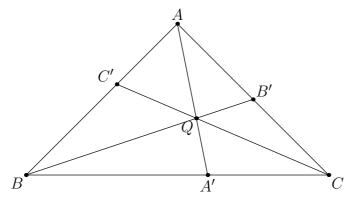


Abbildung 2: Satz von Ceva

Beweis: Der Beweis ist auch eine gute Übungsaufgabe als Anwendung des Lehrsatzes von Menelaus. Betrachten wir das Dreieck $\triangle ABA'$ und die Transversale [CC'] und schreiben die Beziehung von Menelaus

$$\frac{|CA'|}{|CB|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|QA|}{|QA'|} = 1. \tag{5}$$

Analoge Schritte führen wir mit dem Dreieck $\triangle AA'C$ und der Transversalen [BB'] durch und schreiben

$$\frac{|BC|}{|BA'|} \cdot \frac{|QA'|}{|QA|} \cdot \frac{|B'A|}{|B'C|} = 1. \tag{6}$$

Multiplizieren wir die beiden Beziehungen, (5) und (6), so erhalten wir

$$\frac{|CA'|}{|CB|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|QA|}{|QA'|} \cdot \frac{|BC|}{|BA'|} \cdot \frac{|QA'|}{|QA|} \cdot \frac{|B'A|}{|B'C|} = \frac{|A'C|}{|A'B|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|B'A|}{|B'C|} \cdot (-1) = 1,$$

womit der Lehrsatz bewiesen ist

Der Kehrsatz dieses Satzes ist der Satz von Ceva.

Satz - Satz von Ceva

Gilt für die Punkte $A' \in (BC)$, $B' \in (CA)$ und $C' \in (AB)$ die Beziehung

$$\frac{|A'C|}{|A'B|} \cdot \frac{|C'B|}{|C'A|} \cdot \frac{|B'A|}{|B'C|} = -1. \tag{7}$$

so schneiden sich die Geraden (AA'), (BB') und (CC') in einem Punkt.

Beweis: als Übung für den Leser. Durch Zurückführung auf einen Widerspruch erfolgt die Aussage auf einem sehr einfachen Weg.

Aufgabe 1.2.2 – Satz von Ceva

Zeige, daß in einem Dreieck die Seitenhalbierenden (Schwerlinien) einen gemeinsamen Schnittpunkt haben.

Aufgabe 1.2.3 – Satz von Ceva

Zeige, dass sich in einem Dreieck die Winkelhalbierenden in einem Punkt schneiden, dem Mittelpunkt des Inkreises.