

Geometrie

Der Satz von Viviani - Verallgemeinerung

Autor: Peter Andree

Inhaltsverzeichnis

3	Der	Satz von Viviani - Verallgemeinerung	1
	3.1	Der Satz von Viviani	1
	3.2	Bezeichnungen und Vorbemerkungen	2
	3.3	Die Verallgemeinerung des Satzes von Viviani	2

3 Der Satz von Viviani - Verallgemeinerung

3.1 Der Satz von Viviani

Der Satz von Viviani (italienischer Mathematiker, 1622–1703) ist ein sehr einfaches Ergebnis das gleichseitige Dreieck betreffend, von dem heute kaum noch jemand spricht.

Satz - von Viviani

Die Summe der Normalabstände von einem inneren Punkt eines gleichseitigen Dreiecks zu den Dreieckseiten ist gleich der Höhe dieses Dreiecks $\ \square$

Beweis: Es sei das gleichseitige Dreieck ABC mit Seitenlänge a und Höhe h.

Es gilt

$$F_{\triangle PBC} + F_{\triangle PCA} + F_{\triangle PAB} = F_{\triangle ABC}. \tag{1}$$

Daraus folgt die Beziehung

$$\frac{a \cdot p}{2} + \frac{a \cdot q}{2} + \frac{a \cdot r}{2} = \frac{a \cdot h}{2}.$$
 (2)

Durch Division der Beziehung mit a/2 folgt p+q+r=h, was zu beweisen war. Die Beziehung gilt auch, wenn der Punkt P auf den begrenzenden Dreieckseiten liegt

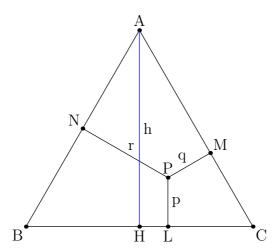


Abbildung 1: Der Satz von Viviani

3.2 Bezeichnungen und Vorbemerkungen

Eine Gerade teilt die Ebene in zwei Halbebenen. Ein Dreieck und dessen Seitenverlängerungen teilen die Ebene in mehrere Gebiete, wie aus der Abbildung (2)zu sehen ist.

- 1. $\left(\mathbf{K}_{(b)A(c)}\right)$ oder $\left[\mathbf{K}_{(b)A(c)}\right]$ ist der Teil ohne, oder mit den begrenzenden Halbgeraden.
- 2. $(\mathbf{T}_{(c)a(b)})$ oder $[\mathbf{T}_{(c)a(b)}]$ ist das Gebiet ohne, oder mit den begrenzenden Halbgeraden und Strecken wie aus der Zeichnung hervorgeht.

Es sei ein Punkt P in der Ebene. Den Abstand zu der Dreieckseite [BC] bezeichnen wir d_a , die zu [BC] entsprechende Höhe h_a . Außerdem definieren wir die Funktion

$$sgn(d,h) = \begin{cases} -1, & \text{wenn } d \text{ und } h \text{ in verschiedenen Halbebenen liegen.} \\ +1, & \text{wenn } d \text{ und } h \text{ in gleichen Halbebenen liegen.} \end{cases}$$
 (3)

3.3 Die Verallgemeinerung des Satzes von Viviani

Satz – Verallgemeinerung des Satzes von Viviani

Gegeben wird ein allgemeines Dreieck $\triangle ABC$ und ein Punkt P aus der Ebene. Dann gilt

$$sgn(d_a, h_a)\frac{d_a}{h_a} + sgn(d_b, h_b)\frac{d_b}{h_b} + sgn(d_c, h_c)\frac{d_c}{h_c} = 1.$$
 (4)

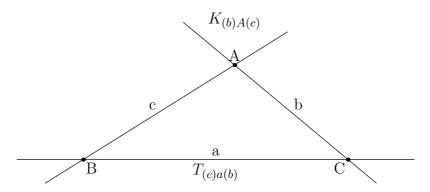


Abbildung 2: Ebeneneinteilung durch Dreieckseiten

Beweis: Wir analysieren die drei möglichen Fälle. Es gelten die Bezeichnungen:

$$\overline{PL} = d_a, \ \overline{PM} = d_b, \ \overline{PN} = d_c, \ \overline{AD} = h_a, \ \overline{BE} = h_b, \ \overline{CF} = h_c.$$

1. $P \in [\triangle ABC]$, siehe Abbildung (3). Die Fläche des Dreiecks $\triangle ABC$ bezeichnen

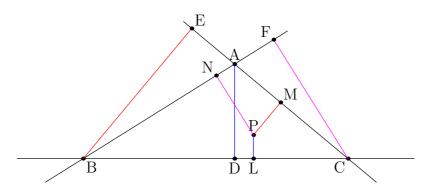


Abbildung 3: $P \in [\triangle ABC]$

wir mit F. Laut (3) gilt

$$sgn(d_a, h_a) = sgn(d_b, h_b) = sgn(d_c, h_c) = 1.$$

Zu beweisen ist

$$\frac{d_a}{h_a} + \frac{d_b}{h_b} + \frac{d_c}{h_c} = 1 \tag{5}$$

Ganz einfach erfolgen die Beziehungen

$$(i) \ \ \frac{d_a}{h_a} = \frac{2F_{PBC}}{a} \cdot \frac{a}{2F} = \frac{F_{PBC}}{F}, \\ (ii) \ \ \frac{d_b}{h_b} = \frac{F_{PCA}}{F}, \ (iii) \ \ \frac{d_c}{h_c} = \frac{F_{PAB}}{F}.$$

Damit wird die Beziehung (5) zu

$$\frac{F_{PBC}}{F} + \frac{F_{PCA}}{F} + \frac{F_{PAB}}{F} = \frac{F_{PBC} + F_{PCA} + F_{PAB}}{F} = \frac{F}{F} = 1 \tag{6}$$

Befindet sich der Punkt auf dem Dreiecksumfang, ist die Beziehung auch erfüllt, was einfach zu beweisen ist.

2. $P \in \left[\mathbf{K}_{(b)A(c)}\right]$, siehe Abbildung (4). Für diesen Fall gilt

$$sgn(d_a, h_a) = 1$$
, $sgn(d_b, h_b) = sgn(d_c, h_c) = -1$.

Zu beweisen ist

$$\frac{d_a}{h_a} - \frac{d_b}{h_b} - \frac{d_c}{h_c} = 1. ag{7}$$

Mit analogen Überlegungen erhalten wir

$$\frac{F_{PBC}}{F} - \frac{F_{PCA}}{F} - \frac{F_{PAB}}{F} = \frac{F_{PBC} - F_{PCA} - F_{PAB}}{F} = \frac{F}{F} = 1$$
 (8)

Befindet sich der Punkt auf dem Keilumfang, ist die Beziehung auch erfüllt.

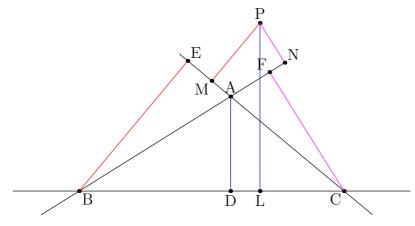


Abbildung 4: $P \in \left[\mathbf{K}_{(b)A(c)}\right]$

3. $P \in [\mathbf{T}_{(c)a(b)}]$, siehe Abbildung (5). Für den Fall $P \in [\mathbf{T}_{(c)a(b)}]$ gelten die Beziehungen

$$sgn(d_a, h_a) = -1, \quad sgn(d_b, h_b) = sgn(d_c, h_c) = 1.$$

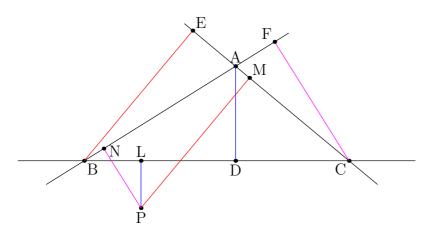


Abbildung 5: $P \in \left[\mathbf{T}_{(c)a(b)}\right]$

Zu beweisen ist

$$-\frac{d_a}{h_a} + \frac{d_b}{h_b} + \frac{d_c}{h_c} = 1. (9)$$

Für (9) ergibt sich mit analogen Überlegungen aus den anderen Fällen

$$-\frac{F_{PBC}}{F} + \frac{F_{PAC}}{F} + \frac{F_{PAB}}{F} = \frac{-F_{PBC} + F_{PAC} + F_{PAB}}{F} = \frac{F}{F} = \frac{F}{F} = 1 \quad (10)$$

Befindet sich P auf dem Rand von $\left[\mathbf{T}_{(c)a(b)}\right]$ ist die Beziehung auch erfüllt